Generalized Relative Lower Order of Entire Function of Two Complex Variables.

Rakesh Kumar ${ }^{1}$,Balram Prajapati ${ }^{2}$, Anupma Rastogi ${ }^{3}$
Department of Mathematics \& Astronomy, University of Lucknow, Lucknow, Pin 226007, Uttar Pradesh, India
E-mail Id: rakeshlakhoiya@gmail.com ${ }^{1}$,balram.kavleshwar@gmail.com ${ }^{2}$, anupmarastogi13121993@gmail.com ${ }^{3}$

Abstract

In this paper we introduce the idea of the generalized relative order of entire function of two complex variables are discussed in this paper.

1. Introduction, Definition and Notations

Let f and g be any two entire functions defined in the complex plane \mathbb{C} and $M_{f}(r)=\max \{|f(z)|:|z|=r\}, \quad M_{g}(r)=\max \{|g(z)|:|z|=r\}$. In [6] defined the generalized order $\rho_{f}^{[l]}$ and generalized lower order $\lambda_{f}^{[l]}$ of an entire function f for any integer $l \geq 2$ in the following way.

$$
\rho_{f}^{[l]}=\lim _{r \rightarrow \infty} \sup \frac{\log { }^{[l]} M_{f}(r)}{\log r}
$$

and

$$
\lambda_{f}^{[l]}=\lim _{r \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}(r)}{\log r}
$$

where
$\log ^{[k]} x=\log \left(\log ^{k-1} x\right), \mathrm{k}=1,2,3 \ldots \ldots \ldots$. and $\quad \log ^{[0]} x=x$
when $l=2$, the above definition coincides with the classical definition of order and lower order, which are as follows:

$$
\rho_{f}=\lim _{r \rightarrow \infty} \sup \frac{\log ^{[2]} M_{f}(r)}{\log r}
$$

and

$$
\lambda_{f}=\lim _{r \rightarrow \infty} \inf \frac{\log ^{[2]} M_{f}(r)}{\log r}
$$

Where $M_{f}(r)$ is strictly increasing and continuous.
In $[1,2]$ Bernal introduced the definition of relative order of g with respect to f, denoted by as follows :

$$
\begin{aligned}
\rho_{g}(f)=\inf \{\mu & \left.>0: M_{f}(r)<M_{g}\left(r^{\mu}\right) \forall r>r_{0}(\mu)>0\right\} \\
& =\lim _{r \rightarrow \infty} \sup \frac{\log M_{g}^{-1} M_{f}(r)}{\log r}
\end{aligned}
$$

Let $f\left(z_{1}, z_{2}\right)$ be a non-constant entire function of two complex variables z_{1} and z_{2} holomorphic in the closed polydisc

$$
\begin{gathered}
\left\{\left(z_{1}, z_{2}\right):\left|z_{j}\right| \leq r_{j}, \quad j=1,2 \forall r_{1} \geq 0, r_{2} \geq 0\right\} \\
F\left(r_{1}, r_{2}\right)=\max \left\{\left|f\left(z_{1}, z_{2}\right)\right|:\left|z_{j}\right| \leq r_{j}, j=1,2\right\}
\end{gathered}
$$

Then by Hartogs theorem and maximum principle in [4], $F\left(r_{1}, r_{2}\right)$ is an increasing function of r_{1}, r_{2}. The order $\rho=\rho(f)$ of $f\left(z_{1}, z_{2}\right)$ is defined in [3] as the infimum of all positive number μ for which

$$
F\left(r_{1}, r_{2}\right)<\exp \left[\left(r_{1} r_{2}\right)^{\mu}\right]
$$

holds for all sufficient large values of r_{1} and r_{2} another words

$$
\rho_{f}=\inf \left\{\mu>0: F\left(r_{1}, r_{2}\right)<\exp \left[\left(r_{1} r_{2}\right)^{\mu}\right] ; \text { for all } r_{1} \geq R(\mu), r_{2} \geq R(\mu)\right\}
$$

Equivalent formula for ρ_{f} in $[1,4]$ is

$$
\rho(f)=\lim _{r_{1}, r_{2} \rightarrow \infty} \sup \frac{\log \log F\left(r_{1}, r_{2}\right)}{\log \left(r_{1} r_{2}\right)}
$$

Let h and k be two functions defined on $\mid R$ such that $h, k: \mid R \rightarrow[-\infty, \infty]$. The order of h relative to k is

$$
\operatorname{order}(h: k)=\inf \left[a>0: \exists C_{a} \in|R, \forall x \in| R, f(x) \leq a^{-1} g(a x)+c_{a}\right]
$$

If H is an entire function then the growth function of H is defined by

$$
h(t)=\sup \left[\log |H(z)|,|z| \leq e^{t}\right], t \in \quad \mid R
$$

if H and K are two entire functions then the order of H relative to K is now defined by

$$
\operatorname{order}(H: K)=\operatorname{order}(h: k)
$$

as observed in [4], the expression $a^{-1} g(a x)+c_{a}$ may be replaced by $g(a x)+c_{a}$ if $g(t)=e^{t}$ because then the infimum in the case coincide.

Taking $c_{a}=0$ in the above definition, are may easily verify that

$$
\operatorname{order}(H: K)=\rho_{K}(H)
$$

i.e., the order $(H: K)$ coincides with Bernal's definition of relative order.

If $K=\exp z$ then order $(H: K)$ coincides with classical order of above papers by Kiselman and other.

Datta, Tanmay and Biswas, introduced the definition of relative order of an entire function $f\left(z_{1}, z_{2}\right)$ with respect to an entire function $g\left(z_{1}, z_{2}\right)$ as follows,

Definition 1. Let $g\left(z_{1}, z_{2}\right)$ be an entire function holomorphic in the closed polydisc $\left\{\left(z_{1}, z_{2}\right):\left|z_{j}\right| \leq r_{j}, j=1,2\right\}$ and let

$$
\begin{gathered}
G\left(r_{1}, r_{2}\right)=\max \left\{\left|g\left(z_{1}, z_{2}\right)\right|:\left|z_{j}\right| \leq r_{j}, j=1,2\right\} \\
\rho_{g}(f)=\inf \left\{\mu>0: F\left(r_{1}, r_{2}\right)<G\left(r_{1}{ }^{\mu}, r_{2}^{\mu}\right) ; \text { for } r_{1} \geq R(\mu), r_{2} \geq R(\mu)\right\}
\end{gathered}
$$

the definition coincides with that of classical (1) if $g\left(z_{1}, z_{2}\right)=\exp z_{1} \cdot z_{2}$
In this paper we introduce the idea of relative order of entire functions of two complex variables.
Definition 2. If $l \geq 1$ is positive integer, then the $l^{\text {th }}$ generalized relative order f with respect to g, denoted by

$$
\begin{aligned}
\rho_{g}^{[l]}(f)=\inf \left\{\mu>0: M_{f}\left(r_{1},\right.\right. & \left.\left.r_{2}\right)<M_{g}\left(\exp ^{[l-1]}\left(r_{1}{ }^{\mu} r_{2}{ }^{\mu}\right)\right) ; \text { for all } r_{1} \geq R(\mu), r_{2} \geq R(\mu)\right\} \\
& =\lim _{r_{1}, r_{2} \rightarrow \infty} \frac{\log ^{[l]} M_{g}^{-1} M_{f}\left(r_{1}, r_{2}\right)}{\log r_{1} r_{2}}
\end{aligned}
$$

If $l=1$ then $\rho_{g}^{[l]}(f)=\rho_{g}(f)$. If $l=1, g\left(z_{1}, z_{2}\right)=e^{z_{1} \cdot z_{2}}$, the classical order of $f(c . f .[7])$
are can define the $l^{\text {th }}$ generalized relative lower order of g with respect to f, denoted by $\lambda_{f}^{[l]}(g)$ as follows.

$$
\lambda_{f}^{[l]}(g)=\lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log \left(r_{1} r_{2}\right)}
$$

Definition 3. A non-constant, entire function f is said to the property (R) if for any $\sigma>1$ and for all sufficiently large r_{1}, r_{2},
$\left[M_{f}\left(r_{1}, r_{2}\right)\right]^{2} \leq M_{f}\left(r_{1}{ }^{\sigma}, r_{2}{ }^{\sigma}\right)$ holds.
Our aim in this paper is to study some parallel basic properties of generalized relative lower order of entire functions (holomorphic functions or integral function) of two complex variables.

Lemma 1. [2] Suppose f is a non-constant entire function,
$\alpha>1,0<\beta<\alpha, \delta>1,0<\mu<\lambda$ and n is a positive integer.
Then

$$
\begin{equation*}
M_{f}\left(\alpha r_{1}, \alpha r_{2}\right)=\beta M_{f}\left(r_{1}, r_{2}\right) \tag{i}
\end{equation*}
$$

(ii) $\exists k=k(\delta, f)>0$ s.t

$$
\left(M_{f}\left(r_{1}, r_{2}\right)\right)^{\delta}=k\left(r_{1}{ }^{\delta}, r_{2}^{\delta}\right) \text { for } r_{1}>0, r_{2}>0
$$

(iii) $\lim _{r_{1}, r_{2} \rightarrow \infty} \frac{M_{f}\left(r_{1} \delta, r_{2}{ }^{\delta}\right)}{M_{f}\left(r_{1}, r_{2}\right)}=\infty=\lim _{r_{1}, r_{2} \rightarrow \infty} \frac{M_{f}\left(r_{1}{ }^{\lambda}, r_{2}{ }^{\lambda}\right)}{M_{f}\left(r_{1}{ }^{\mu}, r_{2}{ }^{\mu}\right)}$
(iv) If f is transcendental then

$$
\lim _{r_{1}, r_{2} \rightarrow \infty} \frac{M_{f}\left(r_{1}^{\delta}, r_{2}^{\delta}\right)}{M_{f}\left(r_{1}, r_{2}\right)}=\infty=\lim _{r_{1}, r_{2} \rightarrow \infty} \frac{M_{f}\left(r_{1}^{\lambda}, r_{2}^{\lambda}\right)}{\left(r_{1}^{n} r_{2}^{n}\right) M_{f}\left(r_{1}^{\mu}, r_{2}^{\mu}\right)}
$$

Lemma 2. [2] Let f be an entire function satisfying the property (R), and let $\delta>1$ and n be a given positive integer. Then the inequality

$$
\left[M_{f}\left(r_{1}, r_{2}\right)\right]^{n} \leq M_{f}\left(r_{1}{ }^{\delta}, r_{2}^{\delta}\right) \text { holds for } r_{1}, r_{2} \text { large enough. }
$$

Lemma 3. Let f, g and h are any three entire functions. If
$M_{g}\left(r_{1}, r_{2}\right) \leq M_{h}\left(r_{1}, r_{2}\right)$ for all sufficiently large values of r_{1}, r_{2} Then

$$
\lambda_{h}^{[l]}(f) \leq \lambda_{g}^{[l]}(f), \text { where } l \geq 1
$$

Lemma 4. Every entire function f satisfying the property (R) is transcendental.
Lemma 5. [5] Let $f\left(z_{1}, z_{2}\right)$ be holomorphic in the polydisc $\left|z_{j}\right|=2 e R_{j} ; R_{j}>0, j=1,2$ with $f(0)=1$ and η be an arbitrary positive number not exceeding $\frac{3 e}{2}$ then inside the polydisc but outside of a family encoding polydisc the sum of where radii is not greater than $4 \eta R_{1}, R_{2}$,
we have

$$
\log \left|f\left(z_{1}, z_{2}\right)\right|>-T(\eta) \log M_{f}\left(2 e R_{1}, 2 e R_{2}\right)
$$

for $T(\eta)=2+\log \frac{3 e}{2 \eta}$
Theorem 1. If $f_{1}, f_{2}, \ldots \ldots \ldots \ldots f_{n} \quad(n \geq 2)$ and g are entire functions, then

$$
\lambda_{f}^{[l]}(g) \geq \lambda_{f_{i}}^{[l]}(g)
$$

where $l \geq 1, f=f_{1} \pm \sum_{k=2}^{n} f_{k}$ and $\lambda_{f_{i}}^{[l]}(g)=\min \left\{\lambda_{f_{k}}^{[l]}(g) / k=1,2, \ldots ., n\right\}$
the equality holds when

$$
\lambda_{f_{i}}^{[l]}(g) \neq \lambda_{f_{k}}^{[l]}(g),\{k=1,2, \ldots ., n \text { and } k \neq i\}
$$

Proof: If $\lambda_{f}^{[l]}(g)=\infty$ then the result is obvious. So we suppose that $\lambda_{f}^{[l]}(g)<\infty$ we can clearly assume that $\lambda_{f_{i}}^{[l]}(g)$ is finite. By hypothesis $\lambda_{f_{i}}^{[l]}(g) \leq \lambda_{f_{k}}^{[l]}(g)$ for all $k=1,2, \ldots \ldots i, \ldots \ldots \ldots \ldots \ldots, n$.we can suppose $\lambda_{f_{i}}^{[l]}(g)>0$
now for any arbitrary $\varepsilon>0$, we get for all sufficiently large values of r_{1}, r_{2} that

$$
M_{f_{k}}\left[\exp ^{[l-1]}\left(r_{1}\right)^{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}\left(r_{2}\right)^{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}\right]<M_{g}\left(r_{1}, r_{2}\right)
$$

where $k=1,2, \ldots \ldots, n$
i.e. $\quad M_{f_{k}}\left(r_{1}, r_{2}\right)<M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}}\right]$
where $k=1,2, \ldots \ldots, n$
so, (1)

$$
M_{f_{k}}\left(r_{1}, r_{2}\right) \leq M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}}\right]
$$

where $k=1,2, \ldots \ldots, n$
now for all sufficiently large values of r_{1}, r_{2}

$$
M_{f}\left(r_{1}, r_{2}\right)<\sum_{k=1}^{n} M_{f_{k}}\left(r_{1}, r_{2}\right)
$$

i.e., $\quad M_{f}\left(r_{1}, r_{2}\right)<\sum_{k=1}^{n} M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{k}}(g)-\varepsilon}}\right]$
i.e., (2)

$$
M_{f}\left(r_{1}, r_{2}\right)<n M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)-\varepsilon}}\right]
$$

now in view of the first part of Lemma 1, we obtain from (2) for all sufficiently large values of r_{1}, r_{2}. that

$$
M_{f}\left(r_{1}, r_{2}\right)<M_{g}\left[(n+1)\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)-\varepsilon}}\right]
$$

i.e., $\quad M_{f}\left[\exp ^{[l-1]}\left(\frac{r_{1} \cdot r_{2}}{n+1}\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)-\varepsilon}}\right]<M_{g}\left(r_{1}, r_{2}\right)$

$$
\exp ^{[l-1]}\left(\frac{r_{1} \cdot r_{2}}{n+1}\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)-\varepsilon}}<M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)
$$

$$
\begin{aligned}
& \lambda_{f_{i}}^{[l]}(g)-\varepsilon<\frac{\log { }^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log r_{1} \cdot r_{2}+o(1)} \\
& \frac{\log { }^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log r_{1} \cdot r_{2}+o(1)}>\lambda_{f_{i}}^{[l]}(g)-\varepsilon
\end{aligned}
$$

so

$$
\lambda_{f}^{[l]}(g)=\lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log r_{1} \cdot r_{2}+O(1)} \geq \lambda_{f_{i}}^{[l]}(g)-\varepsilon
$$

$\varepsilon>0$ is arbitrary,

$$
\begin{equation*}
\lambda_{f}^{[l]}(g) \geq \lambda_{f_{i}}^{[l]}(g) \tag{3}
\end{equation*}
$$

next let

$$
\lambda_{f_{i}}^{[l]}(g)>\lambda_{f_{k}}^{[l]}(g) \text { where } k=1,2, \ldots \ldots \ldots, n \text { and } k \neq i
$$

as $\varepsilon>0$ is arbitrary from the definition of generalized lower order of entire function of two complex variables

$$
M_{g}\left(r_{1}, r_{2}\right)<M_{f}\left[\exp ^{[l-1]}\left(r_{1} r_{2}\right)^{\lambda_{f}^{[l]}(g)+\varepsilon}\right]
$$

i.e.,
(4)

$$
M_{g}\left[\left(\log { }^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right]<M_{f_{i}}\left(r_{1}, r_{2}\right)
$$

since,$\quad \lambda_{f_{i}}^{[l]}(g)<\lambda_{f_{k}}^{[l]}(g)$, where $k=1,2, \ldots \ldots \ldots \ldots, n$ and $k \neq i$
then in view of the third part of Lemma 1 we obtain that.

$$
\text { (5) } \lim _{r_{1}, r_{2} \rightarrow \infty} \frac{M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right.}{M_{g}\left[\left(\log { }^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{i}^{[l]}(g)-\varepsilon}}\right]}=\infty, \text { where } k=1,2, \ldots, n \text { and } k \neq i
$$

Therefore from (5) we obtain for all sufficiently large values of r_{1}, r_{2} that

$$
\begin{equation*}
M_{g}\left[\left(\log { }^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l /}(g)+\varepsilon}}\right]>n M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)-\varepsilon}}\right] \tag{6}
\end{equation*}
$$

For all $k \in\{1,2, \ldots \ldots n\} \backslash\{i\}$
Thus from (1), (4) \& (6) we get for a sequence of values of r_{1}, r_{2} tending to infinity that

$$
M_{f_{i}}\left(r_{1}, r_{2}\right)>M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right]
$$

i.e., $\quad M_{f_{i}}\left(r_{1}, r_{2}\right)>n M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)-\varepsilon}}\right]$

$$
\begin{equation*}
M_{f_{i}}\left(r_{1}, r_{2}\right)>n M_{f_{k}}\left(r_{1}, r_{2}\right) \forall k=1,2, \ldots \ldots, n \text { with } k \neq i \tag{7}
\end{equation*}
$$

so from (4) \& (7) and in view of the first part of Lemma 1 it follows for a sequence of values of r_{1}, r_{2} tending to infinity that

$$
M_{f}\left(r_{1}, r_{2}\right) \geq M_{f_{i}}\left(r_{1}, r_{2}\right)-\sum_{\substack{k=1 \\ k \neq i}}^{n} M_{f_{k}}\left(r_{1}, r_{2}\right)
$$

i.e., $\quad M_{f}\left(r_{1}, r_{2}\right) \geq M_{f_{i}}\left(r_{1}, r_{2}\right)-\frac{1}{n} \sum_{\substack{k=1 \\ k \neq i}}^{n} M_{f_{i}}\left(r_{1}, r_{2}\right)$

$$
\begin{aligned}
& \qquad \begin{array}{l}
M_{f}\left(r_{1}, r_{2}\right) \geq M_{f_{i}}\left(r_{1}, r_{2}\right)-\left(\frac{n-1}{n}\right) M_{f_{i}}\left(r_{1}, r_{2}\right) \\
M_{f}\left(r_{1}, r_{2}\right)>\left(\frac{1}{n}\right) M_{f_{i}}\left(r_{1}, r_{2}\right) \\
M_{f}\left(r_{1}, r_{2}\right)>\left(\frac{1}{n}\right) M_{g}\left[\left(\log ^{[l-1]}\left(r_{1} \cdot r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right] \\
\text { i.e., } \quad M_{f}\left(r_{1}, r_{2}\right)>M_{g}\left[\frac{(\log [l-1]}{}\left[r_{1} \cdot r_{2}\right)\right)^{\frac{\lambda^{[l]}}{[l]}(g)+\varepsilon} \\
n+1
\end{array}
\end{aligned}
$$

this gives for a sequence of values of r_{1}, r_{2} tending to infinity that

$$
M_{f}\left[\exp ^{l-1}\left\{(n+1) r_{1} r_{2}\right\}^{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}\right]>M_{g}\left(r_{1}, r_{2}\right)
$$

i.e., $\quad\left\{(n+1) r_{1} r_{2}\right\}^{\lambda_{f}^{[l]}}(g)+\varepsilon>\log ^{[l-1]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)$

$$
\begin{gathered}
\lambda_{f_{i}}^{[l]}(g)+\varepsilon>\frac{\log { }^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log r_{1} r_{2}+0(1)} \\
\lambda_{f_{i}}^{[l]}(g) \geq \lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log r_{1} r_{2}+0(1)}
\end{gathered}
$$

(8) $\quad \lambda_{f}^{[l]}(g)=\lim _{r_{1}, r_{2} \rightarrow \infty}$ inf $\frac{\log ^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log r_{1} r_{2}} \leq \lambda_{f_{i}}(g)$
so from (3) \& (8) we finally obtain that

$$
\lambda_{f}^{[l]}(g)=\lambda_{f_{i}}^{[l]}(g)
$$

whenever

$$
\lambda_{f_{i}}^{[l]}(g) \neq \lambda_{f_{k}}^{[l]}(g) \forall k \in\{1,2, \ldots \ldots n\} \backslash\{i\}
$$

Theorem 2. Let n, l be two positive integers with $n, l \geq 2$. Then

$$
\frac{1}{n} \lambda_{f}^{[l]}(g)<\lambda_{f^{n}}^{[l]}(g) \leq \lambda_{f}^{[l]}(g)
$$

Proof: From the first and second parts of Lemma 1, we obtain that

$$
\left\{M_{f}\left(r_{1}, r_{2}\right)\right\}^{n} \leq k M_{f}\left(r_{1}^{n}, r_{2}^{n}\right)<M_{f}\left((k+1) r_{1}^{n},(k+1) r_{2}^{n}\right)
$$

$$
\begin{equation*}
n>1 \text { and } r_{1}>0, r_{2}>0 \tag{9}
\end{equation*}
$$

Where $k=k(n, f)>0$. Therefore from (9) we obtain that

$$
M_{f}^{-1}\left(r_{1}^{n}, r_{2}^{n}\right)<\frac{\log ^{[l]} \frac{1}{(k+1)} M_{f}^{-1} M_{g}\left(r_{1}^{n}, r_{2}^{n}\right)}{\log r_{1}^{n} r_{2}^{n}}
$$

i.e., (10)

$$
\lambda_{f^{n}}^{[l]}(g) \geq \frac{1}{n} \lambda_{f}^{[l]}(g)
$$

on the other hand since $\left\{M_{f}\left(r_{1}, r_{2}\right)\right\}^{n}>M_{f}\left(r_{1}, r_{2}\right)$ for all sufficiently large values of r_{1}, r_{2}. we have by lemma 3

$$
\begin{equation*}
\lambda_{f^{n}}^{[l]}(g) \leq \lambda_{f}^{[l]}(g) \tag{11}
\end{equation*}
$$

thus the theorem follows(10) and (11).
Theorem 3. Let P be a polynomial if f is transcendental then $\lambda_{P f}^{[l]}(g)=\lambda_{f}^{[l]}(g)$, and if g is transcendental then $\lambda_{f}^{[l]}(P g)=\lambda_{f}^{[l]}(g)$. If f and g are both transcendental then $\lambda_{P f}^{[l]}(g)=$ $\lambda_{f}^{[l]}(P g)=\lambda_{f}^{[l]}(g)=\lambda_{P f}^{[l]}(g)=\lambda_{P f}^{[l]}(P g)$. Hence $P f$ and $P g$ denote the ordinary product of P with f and g respectively and $l \geq 1$.

Proof: Let m be the degree of $P(z)$. Then there exists α such that $0<\alpha<1$ and a positive integer $n(>m)$ for which

$$
2 \alpha \leq|P(z)| \leq\left(r_{1} r_{2}\right)^{n}
$$

holds on $\left|z_{1}\right|=r_{1},\left|z_{2}\right|=r_{2}$ for all sufficient large values of r_{1}, r_{2} now by the first part of Lemma 1 we obtain that $M_{g}\left(\frac{1}{\alpha}\left(\alpha r_{1}, \alpha r_{2}\right)\right)>\frac{1}{2 \alpha} M_{g}\left(\alpha r_{1}, \alpha r_{2}\right)$,
i.e., (12) $\quad M_{g}\left(\alpha r_{1}, \alpha r_{2}\right)<2 \alpha M_{g}\left(r_{1}, r_{2}\right)$
now let us consider $h(z)=P(z) . f(z)$, then from equation (2) and in view of the fourth part of Lemma 1 we get for any $s(>1)$ and for all sufficiently large values of r_{1}, r_{2}, that

$$
M_{g}\left(\alpha r_{1}, \alpha r_{2}\right)<2 \alpha M_{g}\left(r_{1}, r_{2}\right) \leq M_{h}\left(r_{1}, r_{2}\right) \leq\left(r_{1} r_{2}\right)^{n} M_{g}\left(r_{1}, r_{2}\right)<M_{g}\left(r_{1}^{s}, r_{2}^{s}\right)
$$

So, $\lim _{r_{1}, r_{2} \rightarrow \infty} \frac{\log { }^{[l]} M_{f}^{-1} M_{g}\left(\alpha r_{1}, \alpha r_{2}\right)}{\log r_{1} r_{2}} \leq \lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}^{-1} M_{h}\left(r_{1}, r_{2}\right)}{\log r_{1} r_{2}} \leq \lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}^{-1} M_{g}\left(r_{1} s, r_{2}^{s}\right)}{\log r_{1} r_{2}}$
i.e.,
$\lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log { }^{[l]} M_{f}^{-1} M_{g}\left(\alpha r_{1}, \alpha r_{2}\right)}{\log r_{1} r_{2}+0(1)} \leq \lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log { }^{[l]} M_{f}^{-1} M_{h}\left(r_{1}, r_{2}\right)}{\log r_{1} r_{2}} \leq \lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log g^{[l]} M_{f}^{-1} M_{g}\left(r_{1}{ }^{s}, r_{2}^{s}\right)}{\log r_{1}^{s} r_{2}^{s}} . S$
and letting $S \rightarrow 1+$ we get.

$$
\begin{equation*}
\lambda_{P f}^{[l]}(g)=\lambda_{f}^{[l]}(g) \tag{13}
\end{equation*}
$$

Similarly, when g is transcendental are can easily prove that

$$
\begin{equation*}
\lambda_{f}^{[l]}(P g)=\lambda_{f}^{[l]}(g) \tag{14}
\end{equation*}
$$

if f and g are both transcendental then the conclusion of the theorem can easily be obtained by combining (13) and (14), and the theorem follows.

Theorem 4. If $f_{1}, f_{2}, \ldots \ldots \ldots \ldots, f_{n}(n \geq 2), g$ are entire functions of two complex variables and g has the property (R), then

$$
\lambda_{f}^{[l]}(g) \geq \lambda_{f_{i}}^{[l]}(g)
$$

where $f=\prod_{k=1}^{n} f_{k}$ and $\lambda_{f_{i}}^{[l]}(g)=\min \left\{\lambda_{f_{k}}^{[l]}(g) \quad \mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n}\right\}$
The equality holds when $\lambda_{f_{i}}^{[l]}(g) \neq \lambda_{f_{k}}^{[l]}(g)(k=1,2, \ldots \ldots, n$ and $k \neq i)$
Finally assume that F_{1} and F_{2} are entire functions such that $f=\frac{F_{1}}{F_{2}}$ is also an entire function. Then $\lambda_{f}^{[l]}(g)=\min \left\{\lambda_{F_{1}}^{[l]}(g), \lambda_{F_{2}}^{[l]}(g)\right\}$.

Proof: If $\lambda_{f}^{[l]}(g)=\infty$ then result is obvious by lemma 4. suppose that $\lambda_{f}^{[l]}(g)<\infty$ we can clearly assume that $\lambda_{f_{i}}^{[l]}(g)$ is finite. Also suppose that
$\lambda_{f_{i}}^{[l]}(g) \leq \lambda_{f_{k}}^{[l]}(g) \quad$ where $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n}$. we can suppose $\lambda_{f_{i}}^{[l]}(g)>0$
let $\varepsilon>0$, with $\varepsilon>\lambda_{f_{i}}^{[l]}(g)$, we have for all sufficiently large values of r_{1}, r_{2} that
$M_{f_{k}}\left[\exp ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{f_{k}}^{l l]}(g)-\varepsilon / 2}}\right]<M_{g}\left(r_{1}, r_{2}\right)$, where $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n}$.
i.e., $\quad M_{f}\left(r_{1}, r_{2}\right)<M_{g}\left[\log ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{f}^{[l]}(g)-\varepsilon / 2}}\right]$, where $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n}$.
so, (15)

$$
M_{f_{k}}\left(r_{1}, r_{2}\right) \leq M_{g}\left[\log ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}(g)-\varepsilon / 2}}\right] \text { for } k=1,2, \ldots \ldots, n
$$

From (15) we have for all sufficiently large values of r_{1}, r_{2} that

$$
\begin{aligned}
& \qquad M_{f}\left(r_{1}, r_{2}\right)<\prod_{k=1}^{n} M_{f_{k}}\left(r_{1}, r_{2}\right) \\
& \text { i.e., } M_{f}\left(r_{1}, r_{2}\right)<\prod_{k=1}^{n} M_{g}\left[\log { }^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{j} l(g)-\varepsilon / 2}}\right] \\
& \text { i.e., (16) } \quad M_{f}\left(r_{1}, r_{2}\right)<\left[M_{g}\left[\log ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{f}(l)(g)-\varepsilon / 2}}\right]\right]^{n}
\end{aligned}
$$

observe that

$$
\begin{equation*}
\delta:=\frac{\lambda_{f_{k}}^{[[]}(g)-\varepsilon / 2}{\lambda_{f_{i}}^{[l]}(g)-\varepsilon}>1 \tag{17}
\end{equation*}
$$

Since g has the property (R), in view of Lemma 2 and (17) we obtain from (16) for all sufficiently large values of r_{1}, r_{2} that

$$
M_{f}\left(r_{1}, r_{2}\right)<M_{g} \log ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{\delta}{\lambda_{i}[f(g)-\varepsilon / 2}}=M_{g}\left[\log ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{k}^{l[l]}(g)-\varepsilon / 2}}\right]
$$

i.e., $\quad M_{f}\left[\exp ^{[l-1]}\left(r_{1} r_{2}\right)^{\left(\lambda_{f}^{[l]}(g)-\varepsilon\right)}\right] \leq M_{g}\left(r_{1}, r_{2}\right)$

$$
\begin{gathered}
\left(r_{1} r_{2}\right)^{\left(\lambda_{f_{i}}^{[l]}(g)-\varepsilon\right)}<\log ^{[l-1]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right) \\
\left(\lambda_{f_{i}}^{[l]}(g)-\varepsilon\right) \log r_{1} r_{2}<\log ^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right) \\
\lambda_{f_{i}}^{[l]}(g)-\varepsilon<\frac{\log { }^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)}{\log r_{1} r_{2}}
\end{gathered}
$$

So, $\quad \lambda_{f}^{[l]}(g)=\lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log \left[{ }^{[l]} M_{f}^{-1} M_{g}\left(r_{1}, r_{2}\right)\right.}{\log r_{1} r_{2}} \geq \lambda_{f_{i}}^{[l]}(g)-\varepsilon$
since $\varepsilon>0$ is arbitrary,

$$
\begin{equation*}
\lambda_{f}^{[l]}(g) \geq \lambda_{f_{i}}^{[l]}(g) \tag{18}
\end{equation*}
$$

Next, let

$$
\lambda_{f_{i}}^{[l]}(g)<\lambda_{f_{k}}^{[l]}(g) \text { where } k=1,2, \ldots \ldots \ldots, n \text { and } k \neq l, \text { Fix }>0
$$

with

$$
\varepsilon<\frac{1}{4} \min \left\{\lambda_{f_{k}}^{[l]}(g)-\lambda_{f_{i}}^{[l]}(g): k \in\{1,2, \ldots . . n\} \backslash\{i\}\right\} .
$$

without loss of any generality we may assume that $f_{k}(0)=1$

$$
\text { where } \mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n} \text { and } \mathrm{k} \neq \mathrm{i}
$$

Definition of generalized relative order of entire functions of two complex variables we obtain for a sequence of values of R_{1}, R_{2} tending to infinity that

$$
\begin{aligned}
& \qquad M_{g}\left(R_{1}, R_{2}\right)<M_{f_{i}}\left[\exp ^{[l-1]}\left(R_{1} R_{2}\right)^{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}\right] \\
& \text { i.e., (19) } \quad M_{f_{i}}\left(R_{1}, R_{2}\right)>M_{g}\left[\log { }^{[l-1]}\left(R_{1} R_{2}\right)^{\frac{1}{\lambda_{f}^{[l]}(g)+\varepsilon}}\right]
\end{aligned}
$$

i.e., (19)
also for all sufficiently large values of r_{1}, r_{2} we get
$M_{f_{k}}\left[\exp ^{[l-1]}\left(r_{1}, r_{2}\right)^{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}\right]<M_{g}\left(r_{1}, r_{2}\right)$, where $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n}$ and $\mathrm{k} \neq \mathrm{i}$
i.e., $\quad M_{f_{k}}\left(r_{1}, r_{2}\right)<M_{g}\left[\log ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}}\right]$, where $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n}$ and $\mathrm{k} \neq \mathrm{i}$
since, $\quad \lambda_{f_{i}}^{[l]}(g)<\lambda_{f_{k}}^{[l]}(g)$
We get from above that,

$$
\begin{equation*}
M_{f_{k}}\left(r_{1}, r_{2}\right)<M_{g}\left[\log ^{[l-1]}\left(r_{1} r_{2}\right)^{\frac{1}{\lambda_{f}^{[l]}(g)-\varepsilon}}\right] \tag{20}
\end{equation*}
$$

,where $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n}$ and $\mathrm{k} \neq \mathrm{i}$
now in view of Lemma 5, taking $f_{k}\left(z_{1}, z_{2}\right)$ for $f\left(z_{1}, z_{2}\right), \eta=\frac{1}{16}, 2 R_{1}$ and $2 R_{2}$ for R_{1}, R_{2} it follows for the values of z_{1}, z_{2} specified in the Lemma that

$$
\begin{aligned}
& \log \left|f_{k}\left(z_{1}, z_{2}\right)\right|>-T(\eta) \log M_{f_{k}}\left(2 e .2\left(R_{1}, R_{2}\right)\right) \\
& \text { where } T(\eta)=2+\log \left(\frac{3 e}{2 \cdot \frac{1}{16}}\right)=2+\log (24 e)
\end{aligned}
$$

i.e., $\quad T(\eta)=2+\log \left(\frac{3 e}{\frac{1}{8}}\right)=2+\log (24 e)$
therefore

$$
\log \left|f_{k}\left(z_{1}, z_{2}\right)\right|>-(2+\log (24 e)) \log M_{f_{k}}\left(4 e\left(R_{1}, R_{2}\right)\right)
$$

holds within and $\left|z_{1}\right|=2 R_{1}$ and $\left|z_{2}\right|=2 R_{2}$ but outside a family of excluded polydisc the sum of whose Raddi is not greater than

$$
\begin{gathered}
4 \cdot \frac{1}{16} \cdot 2\left(R_{1}, R_{2}\right)=\frac{1}{2}\left(R_{1}, R_{2}\right) \\
=\left(\frac{R_{1}}{2}, \frac{R_{2}}{2}\right)
\end{gathered}
$$

If, $\quad r_{1} \in\left(R_{1}, 2 R_{1}\right)$ and $r_{2} \in\left(R_{2}, 2 R_{2}\right)$
Then $\left|z_{1}\right|=r_{1}$ and $\left|z_{2}\right|=r_{2}$
(21) $\log \left|f_{k}\left(z_{1}, z_{2}\right)\right|>7 \log M_{f_{k}}\left(4 e .\left(R_{1}, R_{2}\right)\right)$

Since $r_{1}>R_{1}, r_{2}>R_{2}$
we have from above and (19) for a sequence of values of r_{1}, r_{2} tending to infinite that
(22) $M_{f_{i}}\left(r_{1}, r_{2}\right)>M_{f_{i}}\left(R_{1}, R_{2}\right)>M_{g}\left[\log ^{[l-1]}\left(R_{1} R_{2}\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right]>M_{g}\left[\log ^{[l-1]}\left(\frac{r_{1} r_{2}}{2}\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right]$

Let $\left|z_{r_{1}}\right|$ and $\left|z_{r_{2}}\right|$ be a point on polydisc.
Such that

$$
M_{f_{i}}\left(r_{1}\right)=\left|f_{i}\left(r_{1}\right)\right|, M_{f_{i}}\left(r_{2}\right)=\left|f_{i}\left(r_{2}\right)\right| .
$$

therefore as $r_{1}>R_{1}$ and $r_{2}>R_{2}$
from (20) \& (21), (22) it follows for a sequence of values of r_{1}, r_{2} tending to infinite that

$$
\begin{aligned}
& M_{f}\left(r_{1}, r_{2}\right)=\max \left\{\left|f\left(z_{1}, z_{2}\right)\right|:\left|z_{1}\right|=r_{1},\left|z_{2}\right|=r_{2}\right\} \\
& \quad=\max \left\{\prod_{k=1}^{n}\left|f_{k}\left(z_{1}, z_{2}\right)\right|:\left|z_{1}\right|=r_{1},\left|z_{2}\right|=r_{2}\right\}
\end{aligned}
$$

so, $\quad M_{f}\left(r_{1}, r_{2}\right) \geq \prod_{\substack{k=1 \\ k \neq i}}^{n}\left|f_{k}\left(z_{1}, z_{2}\right)\right|\left|f_{i}\left(z_{r_{1}}, z_{r_{2}}\right)\right|$

$$
\begin{aligned}
\text { i.e., } & M_{f}\left(r_{1}, r_{2}\right) \geq \prod_{\substack{k=1 \\
k \neq i}}^{n}\left[M_{f_{k}}\left(4 e R_{1}, 4 e R_{2}\right)\right]^{-7} M_{g}\left[\left(\log { }^{[l-1]}\left(\frac{r_{1} r_{2}}{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right] \\
& \geq \prod_{\substack{k=1 \\
k \neq i}}^{n} M_{g}\left[\log ^{[l-1]}\left(4 e R_{1}, 4 e R_{2}\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}}\right]^{-7} M_{g}\left[\left(\log ^{[l-1]}\left(\frac{r_{1} r_{2}}{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right] \\
& =\prod_{\substack{k=1 \\
k \neq i}}^{n} M_{g}\left[\left(\log ^{[l-1]}\left(4 e R_{1}, 4 e R_{2}\right)\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}}(g)-\varepsilon}\right]^{-7} M_{g}\left[\left(\log ^{[l-1]}\left(\frac{4 e r_{1} r_{2}}{8 e}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right]
\end{aligned}
$$

Hence,
(23) $M_{f}\left(r_{1}, r_{2}\right)=\prod_{\substack{k=1 \\ k \neq i}}^{n}\left[M_{g}\left[\left(\log ^{[l-1]}\left(4 e r_{1} r_{2}\right)\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}}\right]\right]^{-7} \times M_{g}\left[\left(\log ^{[l-1]}\left(\frac{4 e r_{1} r_{2}}{8 e}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right]$
on the other hands, we have

$$
\left(\log ^{[l-1]}\left(\frac{4 e r_{1} r_{2}}{8 e}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}} \geq\left(\log ^{[l-1]}\left(4 e r_{1} r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}[l(g)+2 \varepsilon}}
$$

asymptotically.
using Lemma 2 with $n=2$

$$
\delta=\frac{\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon}{\lambda_{f_{i}}^{[l]}(g)+2 \varepsilon}>1
$$

r_{1}, r_{2} tending to infinity

$$
\begin{equation*}
M_{g}\left[\left(\log ^{[l-1]}\left(\frac{4 e r_{1} r_{2}}{8 e}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+\varepsilon}}\right] \geq M_{g}\left[\left\{\left(\log ^{[l-1]}\left(4 e r_{1} r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon}}\right\}\right] \tag{24}
\end{equation*}
$$

Let, $L=\min \left\{\lambda_{k}^{[l]}(g): k \neq i\right\}$.
Choosing, $\quad \delta=\frac{L-\varepsilon}{\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon}>1$
Choose $\varepsilon>0$

$$
\begin{equation*}
M_{g}\left[\left(\log ^{[l-1]}\left(4 e r_{1} r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon}}\right] \geq \tag{25}
\end{equation*}
$$

$M_{g}\left[\left(\log ^{[l-1]}\left(4 e r_{1} r_{2}\right)\right)^{\frac{1}{L-\varepsilon}}\right]^{7 n} \prod_{\substack{k=1 \\ k \neq i}}^{n} M_{g}\left[\left[\left(\log ^{[l-1]}\left(4 e r_{1} r_{2}\right)\right)^{\frac{1}{\lambda_{f_{k}}^{[l]}(g)-\varepsilon}}\right]\right]^{7}$
for r_{1}, r_{2} now from (23),(24) \& (25), it follows for a sequence of values of r_{1}, r_{2} tending to infinity that

$$
M_{f}\left(r_{1}, r_{2}\right) \geq M_{g}\left[\left(\log ^{[l-1]}\left(4 e r_{1} r_{2}\right)\right)^{\frac{1}{\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon}}\right]
$$

i.e., $\quad M_{f}\left[\exp ^{[l-1]}\left(r_{1} r_{2}\right)^{\left(\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon\right)}\right] \geq M_{g}\left(4 e r_{1} r_{2}\right)$

$$
\begin{gathered}
\left(r_{1} r_{2}\right)^{\left(\lambda_{f}^{[l]}(g)+3 \varepsilon\right)} \geq \log ^{[l-1]} M_{f}^{-1} M_{g}\left(4 e r_{1} r_{2}\right) \\
\left(\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon\right) \log r_{1} r_{2} \geq \log ^{[l]} M_{f}^{-1} M_{g}\left(4 e r_{1} r_{2}\right) \\
\lambda_{f_{i}}^{[l]}(g)+3 \varepsilon \geq \frac{\log { }^{[l]} M_{f}^{-1} M_{g}\left(4 e r_{1} r_{2}\right)}{\log \left(4 e r_{1} r_{2}\right)+0(1)}
\end{gathered}
$$

If $\varepsilon \rightarrow 0$ then we get,

$$
\lambda_{f_{i}}^{[l]}(g) \geq \lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}^{-1} M_{g}\left(4 e r_{1} r_{2}\right)}{\log \left(4 e r_{1} r_{2}\right)+0(1)}
$$

therefore

$$
\begin{equation*}
\lambda_{f}^{[l]}(g)=\lim _{r_{1}, r_{2} \rightarrow \infty} \inf \frac{\log ^{[l]} M_{f}^{-1} M_{g}(r)}{\log r_{1} r_{2}} \leq \lambda_{f_{i}}^{[l]}(g) \tag{26}
\end{equation*}
$$

So from (18) and (26) we finally obtain that

$$
\lambda_{f}^{[l]}(g)=\lambda_{f_{i}}^{[l]}(g)
$$

assume that

$$
\lambda_{f_{i}}^{[l]}(g) \neq \lambda_{f_{k}}^{[l]}(g) \forall k \in\{1,2, \ldots \ldots, n\} \backslash\{i\} .
$$

Let now
$f=\frac{F_{1}}{F_{2}}$ With F_{1}, F_{2}, f entire and suppose

$$
\lambda_{F_{1}}^{[l]}(g) \geq \lambda_{F_{2}}^{[l]}(g)
$$

we have $F_{1}=f . F_{2}$. thus
if

$$
\lambda_{F_{1}}^{[l]}(g)=\lambda_{F}^{[l]}(g)
$$

$$
\lambda_{F}^{[l]}(g)<\lambda_{E_{2}}^{[l]}(g) .
$$

so it follows that

$$
\lambda_{F_{1}}^{[l]}(g)<\lambda_{F_{2}}^{[l]}(g)
$$

which contradicts

$$
\lambda_{F_{1}}^{[l]}(g) \geq \lambda_{F_{2}}^{[l]}(g)
$$

hence

$$
\begin{aligned}
& \lambda_{F}^{[l]}(g)=\lambda_{\frac{F_{1}}{F_{2}}}^{[l]}(g) \geq \lambda_{F_{2}}^{[l]}(g) \\
& \quad=\min \left\{\lambda_{F_{1}}^{[l]}(g), \lambda_{F_{2}}^{[l]}(g)\right\}
\end{aligned}
$$

also suppose that

$$
\lambda_{F_{1}}^{[l]}(g)>\lambda_{F_{2}}^{[l]}(g)
$$

than

$$
\lambda_{F_{1}}^{[l]}(g)=\min \left\{\lambda_{f}^{[l]}(g), \lambda_{F_{2}}^{[l]}(g)\right\}=\lambda_{F_{2}}^{[l]}(g)
$$

If, $\quad \lambda_{f}^{[l]}(g)>\lambda_{F_{2}}^{[l]}(g)$
which is also a contradiction
thus, $\quad \lambda_{f}^{[l]}(g)=\lambda_{F_{1}}^{[l]}(g)=\min \left\{\lambda_{F_{1}}^{[l]}(g), \lambda_{F_{2}}{ }^{[l]}(g)\right\}$.
This proves the theorem.
Acknowledgement. The authors are thankful to the referee for valuable suggestions towards the improvement of the paper.

Reference: -

[1] L. Bernal, Crecimiento relativo de functions enteras Contributional estudio de lasfunctions enteras con indice exponential finite, Doctoral dissertation, University of Seville, Spain 1984.
[2] L. Bernal, Orden relativo de crecimiento de functions enteras, Collect . Math, 39 (1988). 209-229.
[3] S.K. Datta , T. Biswas and R. Biswas, Some results on relative lower order of entire functions casp.J. Appl. Math. Ecol. Econ.,1, 2(2013), 3-18.
[4] S. Halvarsson, Growth properties of entire functions depending on a parameter, Ann. Polon. Math., 14, 1 (1996). 71-96.
[5] C. O. Kiselman , Order and type as measure of growth for convex or entire functions ,Proc. Lond . Math . Soc., 66 , (1993) , $152-186$.
[6] C. O. Kiselman , Plurisubharmonic functions and potential theory in several complex variable a contribution to the book project, Development of Mathematics 1950-2000, edited by Hean Paul Pier.
[7] B. K. Lahiri and D. Banerjee , Generalized relative order of entire functions . Proc. Nat . Sci. India , 72(A), 4(2002). 351-371.
[8] B.J. Levin ,Distribution of zeros of Entire functions , American mathematical Society, Providence (1980).
[9] D. Sato, On the rate of growth of entire function of fast growth, Bull. Amer. Math. Soc. , 69(1963), 411-414.
[10] E.C. Titchmarsh , the theory of functions, $2^{\text {nd }}$ ed. Oxford University Press, Oxford (1968).
[11] G. Valison, Lectures on the General theory of Integral functions, Chelsea Publishing Company (1949).
[12] A.K. Agarwal, On the properties of an entire functions of two complex variables, Canadian J. Math. 20(1968). 51-57.
[13] D. Banerjee, R.K. Dutta, Relative order of entire functions of two complex variables, Internet . J. Math. Sci. \& Engg. Appl,. 1(2007), 141-154.
[14] B.A. Fuks , Theory of analytic functions of several complex Variables, Moscow, 1963.

